Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science & Technology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Size-Resolved Particle Number Emission Patterns under Real-World Driving Conditions Using Positive Matrix Factorization

Authors: Domínguez-Sáez, A.; Viana, M.; Barrios, C.C.; Rubio, J.R.; Amato, F.; Pujadas, M.; Querol, X.;

Size-Resolved Particle Number Emission Patterns under Real-World Driving Conditions Using Positive Matrix Factorization

Abstract

A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (<29.4 nm) and around 98 nm. We suggest potential approaches to reduce particle number emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions <40 nm is only possible under real-world driving conditions.

Country
Netherlands
Keywords

Air Pollutants, Automobile Driving, Earth & Environment, Environment, Environmental and Life Sciences, Air and Sustainability, EELS - Earth, CAS - Climate, Urban Development, Spain, Air Pollution, Particulate Matter, Built Environment, Particle Size, Environmental Monitoring, Vehicle Emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average