Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao KITopen (Karlsruhe I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Science & Technology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Response of Different Nitrospira Species To Anoxic Periods Depends on Operational DO

Authors: Gilbert, E. M.; Agrawal, S.; Brunner, F. C.; Schwartz, T.; Horn, H.; Lackner, S.;

Response of Different Nitrospira Species To Anoxic Periods Depends on Operational DO

Abstract

The exploitation of a lag phase in nitrate production after anoxic periods is a promising approach to suppress nitrite oxidizing bacteria, which is crucial for implementation of the combined partial nitritation-anammox process. An in-depth study of the actual lag phase in nitrate production after short anoxic periods was performed with varied temperatures and air flow rates. In monitored batch experiments, biomass from four different full-scale partial nitritation-anammox plants was subjected to anoxic periods of 5-60 min. Ammonium and the nitrite that was produced were present to reproduce reactor conditions and enable ammonium and nitrite oxidation at the same time. The lag phase observed in nitrite oxidation exceeded the lag phase in ammonium oxidation after anoxic periods of more than 15-20 min. Lower temperatures slowed down the conversion rates but did not affect the lag phases. The operational oxygen concentration in the originating full scale plants strongly affected the length of the lag phase, which could be attributed to different species of Nitrospira spp. detected by DGGE and sequencing analysis.

Country
Germany
Keywords

info:eu-repo/classification/ddc/660, Nitrates, 660, Bacteria, ddc:660, Chemical engineering, Bioreactors, Biomass, Hypoxia, Oxidation-Reduction, Nitrites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 1%
Top 10%
Top 10%