Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advanced Fluidized Bed Combustion Sorbent Reactivation Technology

Authors: E. A. J. Gandolfi; Edward J. Anthony; S. Burwell; J. V. Iribarne; A. Mackenzie; A. P. Iribarne; O. Trass;

Advanced Fluidized Bed Combustion Sorbent Reactivation Technology

Abstract

A new technique for simultaneous grinding and hydrating of fluidized bed combustion (FBC) bottom ash has been developed. This method has been shown to be effective in hydrating the CaO component of the ash, so that the sorbent is reactivated. Careful control of water levels is required to prevent energy demand increases for grinding. No problems associated with the potentially exothermic reaction of water with FBC bottom ash have been observed during grinding. When excess water (over that required by hydration) is used, the resulting material is a slurry and, while quantitative conversion of CaO in the solids is achieved, using the slurry for the sorbent would require a redesign of the limestone feed system. Therefore, coal or unreacted ash is added to the mixture after grinding. The resulting dry product contains the spent bed material in a completely hydrated form. The reactivated ash produced has been evaluated for sulfur capture using thermogravimetric analysis and a CFBC pilot plant. Conversion rates...

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Top 10%
Top 10%