Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalytic Oxidation of Biomass Tar over Platinum and Ruthenium Catalysts

Authors: Jae Goo Lee; Yong Ku Kim; Sang Jun Yoon;

Catalytic Oxidation of Biomass Tar over Platinum and Ruthenium Catalysts

Abstract

The catalytic oxidation of a model biomass tar, toluene, was studied using platinum and ruthenium on γ-alumina catalysts at various temperature, catalyst sizes, and metal contents in an environment with either the presence or absence of syngas. As the reaction temperature increased and the size of the catalyst decreased, the conversion of toluene increased. Usually, the higher content of platinum and ruthenium in the catalyst showed higher conversion of toluene. It was found that the presence or absence of syngas greatly affected the toluene conversion. The platinum catalyst showed a higher toluene conversion efficiency than the ruthenium catalyst at the same temperature in the absence of syngas, while in the presence of syngas, the ruthenium catalyst showed a better conversion efficiency than the platinum catalyst. The results indicate that a temperature of over 300 °C is required in order to oxidize tar efficiently using these catalysts.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%