Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the American Chemical Society
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Near-Edge Fine Structure X-ray Spectra of the Manganese Catalytic Site for Water Oxidation in Photosystem II

Authors: Brena, Barbara; Siegbahn, P. E. M.; Ågren, H.;

Modeling Near-Edge Fine Structure X-ray Spectra of the Manganese Catalytic Site for Water Oxidation in Photosystem II

Abstract

The Mn 1s near-edge absorption fine structure (NEXAFS) has been computed by means of transition-state gradient-corrected density functional theory (DFT) on four Mn(4)Ca clusters modeling the successive S(0) to S(3) steps of the oxygen-evolving complex (OEC) in photosystem II (PSII). The model clusters were obtained from a previous theoretical study where they were determined by energy minimization. They are composed of Mn(III) and Mn(IV) atoms, progressing from Mn(III)(3)Mn(IV) for S(0) to Mn(III)(2)Mn(IV)(2) for S(1) to Mn(III)Mn(IV)(3) for S(2) to Mn(IV)(4) for S(3), implying an Mn-centered oxidation during each step of the photosynthetic oxygen evolution. The DFT simulations of the Mn 1s absorption edge reproduce the experimentally measured curves quite well. By the half-height method, the theoretical IPEs are shifted by 0.93 eV for the S(0) → S(1) transition, by 1.43 eV for the S(1) → S(2) transition, and by 0.63 eV for the S(2) → S(3) transition. The inflection point energy (IPE) shifts depend strongly on the method used to determine them, and the most interesting result is that the present clusters reproduce the shift in the S(2) → S(3) transition obtained by both the half-height and second-derivative methods, thus giving strong support to the previously suggested structures and assignments.

Country
Sweden
Keywords

Models, Molecular, Theoretical study, Water oxidation, X-ray spectra, roentgen spectroscopy, oxidation, water, Catalysis, Photosystem II, Transition-state, Absorption edges, Fine structures, Naturvetenskap, Catalytic sites, Clusters modeling, Gradient-corrected density functional theory, Manganese, photosynthesis, catalysis, Molecular Structure, Absorption fine structure, article, Photosystem II Protein Complex, Water, Catalytic oxidation, Inflection points, Energy minimization, X-Ray Absorption Spectroscopy, Density functional theory, chemical structure, Quantum Theory, Oxygen-evolving complexes, molecular model, Natural Sciences, Oxygen evolution, oxygen, Oxidation-Reduction, energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Energy Research