Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells

Authors: Andrew C. Stuart; Harald Ade; John R. Tumbleston; Huaxing Zhou; Wentao Li; Wei You; Shubin Liu;

Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells

Abstract

Three structurally identical polymers, except for the number of fluorine substitutions (0, 1, or 2) on the repeat unit (BnDT-DTBT), are investigated in detail, to further understand the impact of these fluorine atoms on open circuit voltage (V(oc)), short circuit current (J(sc)), and fill factor (FF) of related solar cells. While the enhanced V(oc) can be ascribed to a lower HOMO level of the polymer by adding more fluorine substituents, the improvement in J(sc) and FF are likely due to suppressed charge recombination. While the reduced bimolecular recombination with raising fluorine concentration is confirmed by variable light intensity studies, a plausibly suppressed geminate recombination is implied by the significantly increased change of dipole moment between the ground and excited states (Δμ(ge)) for these polymers as the number of fluorine substituents increases. Moreover, the 2F polymer (PBnDT-DTffBT) exhibits significantly more scattering in the in-plane lamellar stacking and out-of-plane π-π stacking directions, observed with GIWAXS. This indicates that the addition of fluorine leads to a more face-on polymer crystallite orientation with respect to the substrate, which could contribute to the suppressed charge recombination. R-SoXS also reveals that PBnDT-DTffBT has larger and purer polymer/fullerene domains. The higher domain purity is correlated with an observed decrease in PCBM miscibility in polymer, which drops from 21% (PBnDT-DTBT) to 12% (PBnDT-DTffBT). The disclosed "fluorine" impact not only explains the efficiency increase from 4% of PBnDT-DTBT (0F) to 7% with PBnDT-DTffBT (2F) but also suggests fluorine substitution should be generally considered in the future design of new polymers.

Keywords

Models, Molecular, Electric Power Supplies, Molecular Structure, Polymers, Solar Energy, Electrochemical Techniques, Fluorine, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    527
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
527
Top 1%
Top 1%
Top 0.1%
Related to Research communities
Energy Research