
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Turn-on Phosphorescence by Metal Coordination to a Multivalent Terpyridine Ligand: A New Paradigm for Luminescent Sensors

A hexathiobenzene molecule carrying six terpyridine (tpy) units at the periphery has been designed to couple the aggregation induced phosphorescence, displayed by the core in the solid state, to the metal binding properties of the tpy units. Upon Mg(2+) complexation in THF solution, phosphorescence of the hexathiobenzene core is turned on. Metal ion coordination yields the formation of a supramolecular polymer which hinders intramolecular rotations and motions of the core chromophore, thus favoring radiative deactivation of the luminescent excited state. Upon excitation of the [Mg(tpy)2](2+) units of the polymeric structure, sensitization of the core phosphorescence takes place with >90% efficiency. The light-harvesting polymeric antenna can be disassembled upon fluoride ion addition, thereby switching off luminescence and offering a new tool for fluoride ion sensing. This unique system can, thus, serve as cation or anion sensor.
metal ions; fluoride; AIE; phosphorescence; Light-harvesting antenna; ions sensors
metal ions; fluoride; AIE; phosphorescence; Light-harvesting antenna; ions sensors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).227 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
