
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Relationship between the Electrochemical Behavior and Li Arrangement in LixMyMn2-yO4 (M = Co, Cr) with Spinel Structure

doi: 10.1021/jp056334y
pmid: 16526742
Relationship between the Electrochemical Behavior and Li Arrangement in LixMyMn2-yO4 (M = Co, Cr) with Spinel Structure
The relationship between the electrochemical behavior and the arrangement of lithium/vacancies has been investigated with electrochemical Li removal in Li(x)M(y)Mn(2-y)O4 (x or = approximately 0.5 and (2) approximately 4.2 V at x < or = approximately 0.5. To understand the stepwise behavior, entropy measurement of reaction, DeltaS(obs), was performed by using the electrochemical methods. The changes of the sign in deltaS(obs) from negative to positive at the composition x approximately 0.50 in Li(x)M(y)Mn(2-y)O4 indicated that the ordered arrangement of Li/vacancies was formed with electrochemical Li removal. Moreover, such an ordering was suppressed by the substitution of Co3+ and Cr3+ for Mn3+. To clarify the nature and origin of Li/vacancy ordering, the Monte Carlo simulation was performed in view of Coulombic interaction. The simulation reproduced the formation of a new phase arising from Li/vacancy ordering at x = 0.50 in Li(x)Mn2O4. In addition, the ordered arrangement of Li/vacancy at x = 0.5 was perturbed by the trivalent M3+ replacement in spinel structure due to the local clustering of Li+ around M3+. Consequently, the electrochemical behavior in spinel LiMn2O4 was deeply related to the Coulombic interactions, proved by the fact that experimentally observed changes in entropy agreed well with Monte Carlo simulation based on the Coulombic interaction.
330
330
1 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
