
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photophysics and Deactivation Pathways of Thymine

doi: 10.1021/jp804309x
pmid: 18707067
Combined complete active space perturbation theory (CASPT2) and multireference configuration interaction calculations with single and double excitations (MR-CISD) were performed in order to explore possible deactivation pathways of thymine after photoexcitation. Equilibrium geometries are reported together with a total of eight extremes (minima or maxima) on the crossing seam (MXS), through which such radiationless transitions may occur. Furthermore, conformational analysis allows grouping these conical intersections in five distinct types. Reaction paths were calculated connecting the S1 (1)n pi* minimum with the lowest-energy MXS of each group. Two distinct types of paths were observed, both with features that should delay the internal conversion to the ground state. This is shown to provide a possible explanation for the relatively long excited-state lifetime of thymine.
- University of Vienna u:cris Austria
- University of Oxford United Kingdom
- University of Vienna Austria
104022 Theoretical chemistry, Photochemistry, Molecular Conformation, Energy Transfer, 104022 Theoretische Chemie, Quantum Theory, Thermodynamics, Algorithms, Thymine
104022 Theoretical chemistry, Photochemistry, Molecular Conformation, Energy Transfer, 104022 Theoretische Chemie, Quantum Theory, Thermodynamics, Algorithms, Thymine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).63 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
