Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Physi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physical Chemistry A
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photophysics and Deactivation Pathways of Thymine

Authors: Gunther Zechmann; Mario Barbatti;

Photophysics and Deactivation Pathways of Thymine

Abstract

Combined complete active space perturbation theory (CASPT2) and multireference configuration interaction calculations with single and double excitations (MR-CISD) were performed in order to explore possible deactivation pathways of thymine after photoexcitation. Equilibrium geometries are reported together with a total of eight extremes (minima or maxima) on the crossing seam (MXS), through which such radiationless transitions may occur. Furthermore, conformational analysis allows grouping these conical intersections in five distinct types. Reaction paths were calculated connecting the S1 (1)n pi* minimum with the lowest-energy MXS of each group. Two distinct types of paths were observed, both with features that should delay the internal conversion to the ground state. This is shown to provide a possible explanation for the relatively long excited-state lifetime of thymine.

Country
Austria
Related Organizations
Keywords

104022 Theoretical chemistry, Photochemistry, Molecular Conformation, Energy Transfer, 104022 Theoretische Chemie, Quantum Theory, Thermodynamics, Algorithms, Thymine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research