
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
NH4+ + CH4 Gas Phase Collisions as a Possible Analogue to Protonated Peptide/Surface Induced Dissociation

doi: 10.1021/jp900919s
pmid: 19358592
Results are reported for a direct dynamics simulation of NH(4)(+) + CH(4) gas phase collisions. We interpret the results with protonated peptide/hydrogenated alkanethiolate self-assembled monolayer (H-SAM) surface collisions in mind. Previous theoretical studies of such systems have made use of nonreactive surfaces, and therefore, our goal is to investigate the types and likelihood of peptide/H-SAM reactions. In that vein, the NH(4)(+) + CH(4) reaction represents a simple gas phase system which includes many of the important interactions present in protonated peptide/H-SAM surfaces. Thirty-seven open pathways are seen in the 5-35 eV collision energy range. An energy dependence on the likelihood of forming CN bonds is found. This type of bonding could deposit both the peptide and its molecular fragments on the H-SAM surface. For our gas phase collision system, around 50% of the trajectories result in the formation of CN bonds. For all collision energies in which reactive scattering occurs, CN bond formation is an important reaction pathway.
- The University of Texas System United States
Quaternary Ammonium Compounds, Energy Transfer, Models, Chemical, Surface Properties, Thermodynamics, Computer Simulation, Membranes, Artificial, Peptides, Methane
Quaternary Ammonium Compounds, Energy Transfer, Models, Chemical, Surface Properties, Thermodynamics, Computer Simulation, Membranes, Artificial, Peptides, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
