Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Basel:...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Langmuir
Article . 2004 . Peer-reviewed
Data sources: Crossref
Langmuir
Article . 2006
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Assembled Monolayers of Ru/Os Dinuclear Complexes: Probing Monolayer Structure and Interaction Energies by Electrochemical Means

Authors: Figgemeier, E.; Constable, Edwin C.; Housecroft, Catherine E.; Zimmermann, Y. C.;

Self-Assembled Monolayers of Ru/Os Dinuclear Complexes: Probing Monolayer Structure and Interaction Energies by Electrochemical Means

Abstract

Monolayers of [Ru(bpy)2(micro-1)M2][PF6]4 salts (M = Os, Ru; bpy = 2,2'-bipyridine, 1 = 4'-(2,2'-bipyridin-4-yl)-2,2':6',2' '-terpyridine, tpy = 2,2':6',2' '-terpyridine, and 2 = 4'-(4-pyridyl)-2,2':6',2' '-terpyridine) were self-assembled on platinum and investigated by fast-scan electrochemistry. The electrochemistry of the complexes in solution and confined to the surface in self-assembled monolayers (SAMs) exhibited an almost ideal behavior. Scan-rate-dependent measurements of the peak current density (jp) were used to determine interaction energies within the monolayer. It is shown that the tpy coordination sites of the dinuclear complexes interact more strongly within the SAM than the bipyridine-coordinated fragments. This result was supported by peak potential shifts, which are due to interaction forces in SAMs. The alignment of the rodlike complexes relative to the surface is discussed, and the results of molecular mechanics calculations indicate that the species adopt a tilted orientation.

Country
Switzerland
Related Organizations
Keywords

Models, Molecular, Molecular Structure, Surface Properties, Osmium, Ruthenium, Energy Transfer, Models, Chemical, Electrochemistry, Organometallic Compounds, Adsorption, Particle Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
Related to Research communities
Energy Research