
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Zipper and Layer-by-Layer Assemblies of Artificial Photosystems Analyzed by Combining Optical and Piezoelectric Surface Techniques

doi: 10.1021/la2007815
pmid: 21526834
Quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) were used to study zipper and layer-by-layer multilayer assemblies of artificial photosystems based on naphthalenediimides (NDIs) attached to an oligophenylethynyl (OPE-NDI) or p-oligophenyl (POP-NDI) backbone in dry and wet state. For the most interesting OPE-NDI zipper, one obtains for the dry film a monolayer thickness of 1.85 nm and a density of 1.58 g/cm(3), while the wet film has a larger monolayer thickness of 3.6 nm with a water content of 36%. The dry thickness of a monolayer in OPE-NDI zippers corresponds to about one-half of the length of the OPE scaffold in agreement with the proposed structure of the zipper. The low water content of the OPE-NDI films confirms their compact structure. The dry monolayer thickness of the POP-NDI films of 1.45 nm is smaller than that for the OPE-NDI films, which is probably related to a tilt of the POP scaffolds within the adsorbed layer. The POP-NDI films swell in water much more substantially, suggesting a much more open structure. These features are in excellent agreement with the better photophysical performance of the OPE-NDI assemblies when compared to the POP-NDI films.
- University of Geneva Switzerland
- Massachusetts Institute of Technology United States
info:eu-repo/classification/ddc/540, ddc: ddc:540
info:eu-repo/classification/ddc/540, ddc: ddc:540
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
