Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering

Authors: Cheng Wang; Eliot Gann; Harald Ade; Brian Collins; Christopher R. McNeill; Hongping Yan;

Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering

Abstract

Enhanced scattering contrast afforded by resonant soft X-ray scattering (R-SoXS) is used to probe the nanomorphology of all-polymer solar cells based on blends of the donor polymer poly(3-hexylthiophene) (P3HT) with either the acceptor polymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2',2"-diyl) (F8TBT) or poly([N,N'-bis(2-octyldodecyl)-11-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-12-bithiophene)) (P(NDI2OD-T2)). Both P3HT:F8TBT and P3HT:P(NDI2OD-T2) blends processed from chloroform with subsequent annealing exhibit complicated morphologies with a hierarchy of phase separation. A bimodal distribution of domain sizes is observed for P3HT:P(NDI2OD-T2) blends with small domains of size ~5-10 nm that evolve with annealing and larger domains of size ~100 nm that are insensitive to annealing. P3HT:F8TBT blends in contrast show a broader distribution of domain size but with the majority of this blend structured on the 10 nm length scale. For both P3HT:P(NDI2OD-T2) and P3HT:F8TBT blends, an evolution in device performance is observed that is correlated with a coarsening and purification of domains on the 5-10 nm length scale. Grazing-incidence wide-angle X-ray scattering (GI-WAXS) is also employed to probe material crystallinity, revealing P(NDI2OD-T2) crystallites 25-40 nm in thickness that are embedded in the larger domains observed by R-SoXS. A higher degree of P3HT crystallinity is also observed in blends with P(NDI2OD-T2) compared to F8TBT with the propensity of the polymers to crystallize in P3HT:P(NDI2OD-T2) blends hindering the structuring of morphology on the sub-10 nm length scale. This work also underscores the complementarity of R-SoXS and GI-WAXS, with R-SoXS measuring the size of compositionally distinguishable domains and GI-WAXS providing information regarding crystallinity and crystallite thickness.

Keywords

X-Rays, Statistics as Topic, Equipment Design, Nanostructures, Equipment Failure Analysis, Electric Power Supplies, Solar Energy, Scattering, Radiation, Particle Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 10%
Top 10%
Top 1%
Related to Research communities
Energy Research