
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering

doi: 10.1021/nn204150f
pmid: 22168639
Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering
Enhanced scattering contrast afforded by resonant soft X-ray scattering (R-SoXS) is used to probe the nanomorphology of all-polymer solar cells based on blends of the donor polymer poly(3-hexylthiophene) (P3HT) with either the acceptor polymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2',2"-diyl) (F8TBT) or poly([N,N'-bis(2-octyldodecyl)-11-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-12-bithiophene)) (P(NDI2OD-T2)). Both P3HT:F8TBT and P3HT:P(NDI2OD-T2) blends processed from chloroform with subsequent annealing exhibit complicated morphologies with a hierarchy of phase separation. A bimodal distribution of domain sizes is observed for P3HT:P(NDI2OD-T2) blends with small domains of size ~5-10 nm that evolve with annealing and larger domains of size ~100 nm that are insensitive to annealing. P3HT:F8TBT blends in contrast show a broader distribution of domain size but with the majority of this blend structured on the 10 nm length scale. For both P3HT:P(NDI2OD-T2) and P3HT:F8TBT blends, an evolution in device performance is observed that is correlated with a coarsening and purification of domains on the 5-10 nm length scale. Grazing-incidence wide-angle X-ray scattering (GI-WAXS) is also employed to probe material crystallinity, revealing P(NDI2OD-T2) crystallites 25-40 nm in thickness that are embedded in the larger domains observed by R-SoXS. A higher degree of P3HT crystallinity is also observed in blends with P(NDI2OD-T2) compared to F8TBT with the propensity of the polymers to crystallize in P3HT:P(NDI2OD-T2) blends hindering the structuring of morphology on the sub-10 nm length scale. This work also underscores the complementarity of R-SoXS and GI-WAXS, with R-SoXS measuring the size of compositionally distinguishable domains and GI-WAXS providing information regarding crystallinity and crystallite thickness.
- Lawrence Berkeley National Laboratory United States
- North Carolina Agricultural and Technical State University United States
- North Carolina Agricultural and Technical State University United States
- Lawrence Berkeley National Laboratory United States
- University of Cambridge United Kingdom
X-Rays, Statistics as Topic, Equipment Design, Nanostructures, Equipment Failure Analysis, Electric Power Supplies, Solar Energy, Scattering, Radiation, Particle Size
X-Rays, Statistics as Topic, Equipment Design, Nanostructures, Equipment Failure Analysis, Electric Power Supplies, Solar Energy, Scattering, Radiation, Particle Size
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).149 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
