
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rupture Process of the Mw 3.3 Earthquake in the St. Gallen 2013 Geothermal Reservoir, Switzerland

doi: 10.1029/2019gl082911
AbstractWe analyze slip distribution and rupture kinematics of a Mw3.3 induced event that occurred in the St. Gallen geothermal reservoir (NE Switzerland) in 2013. We carry out a two‐step procedure: (1) path effects are deconvolved from the seismograms using an empirical Green's function, resulting in relative source time functions at all seismic stations; (2) the relative source time functions are back‐projected to the corresponding isochrones on the fault plane. Results reveal that the mainshock rupture propagates toward NNE from the hypocenter with an average velocity of 2,000 m/s. Spatiotemporal organization of foreshocks and aftershocks shows that the mainshock broke a previously less active portion of the fault and suggests that the aftershock sequence could be mainly driven by stress transfer. Applying this method in an operational environment could enable fast retrieval of seismic slip, allowing assessment of fault asperities and structures involved in the reservoir creation process.
- UNIVERSITE PARIS DESCARTES France
- Swiss Seismological Service Switzerland
- Swiss Re United Kingdom
- New Sorbonne University France
- Institut National des Sciences de l'Univers France
[SDU] Sciences of the Universe [physics], earthquake source, 550, [SDU]Sciences of the Universe [physics], geothermal energy, induced seismicity
[SDU] Sciences of the Universe [physics], earthquake source, 550, [SDU]Sciences of the Universe [physics], geothermal energy, induced seismicity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
