
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation

doi: 10.1029/2019gl086075
AbstractWe explore the representation of the Atlantic Meridional Overturning Circulation (AMOC) in 27 models from the CMIP6 multimodel ensemble. Comparison with RAPID and SAMBA observations suggests that the ensemble mean represents the AMOC strength and vertical profile reasonably well. Linear trends over the entire historical period (1850–2014) are generally neutral, but many models exhibit an AMOC peak around the 1980s. Ensemble mean AMOC decline in future (SSP) scenarios is stronger in CMIP6 than CMIP5 models. In fact, AMOC decline in CMIP6 is surprisingly insensitive to the scenario at least up to 2060. We find an emergent relationship among a majority of models between AMOC strength and 21st century AMOC decline. Constraining this relationship with RAPID observations suggests that the AMOC might decline between 6 and 8 Sv (34–45%) by 2100. A smaller group of models projects much less AMOC weakening of only up to 30%.
- Joint Institute for the Study of the Atmosphere and Ocean United States
- National Oceanic and Atmospheric Administration United States
- University of Mary United States
- Los Alamos National Laboratory United States
- National Center for Atmospheric Research United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).196 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
