
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantifying Nitrous Oxide Emissions in the U.S. Midwest: A Top‐Down Study Using High Resolution Airborne In‐Situ Observations

AbstractThe densely farmed U.S. Midwest is a prominent source of nitrous oxide (N2O) but top‐down and bottom‐up N2O emission estimates differ significantly. We quantify Midwest N2O emissions by combining observations from the Atmospheric Carbon and Transport‐America campaign with model simulations to scale the Emissions Database for Global Atmospheric Research (EDGAR). In October 2017, we scaled agricultural EDGAR v4.3.2 and v5.0 emissions by factors of 6.3 and 3.5, respectively, resulting in 0.42 nmol m−2 s−1 Midwest N2O emissions. In June/July 2019, a period when extreme flooding was occurring in the Midwest, agricultural scaling factors were 11.4 (v4.3.2) and 9.9 (v5.0), resulting in 1.06 nmol m−2 s−1 Midwest emissions. Uncertainties are on the order of 50 %. Agricultural emissions estimated with the process‐based model DayCent (Daily version of the CENTURY ecosystem model) were larger than in EDGAR but still substantially smaller than our estimates. The complexity of N2O emissions demands further studies to fully characterize Midwest emissions.
- Ludwig-Maximilians-Universität München Germany
- Pennsylvania State University United States
- National Oceanic and Atmospheric Administration United States
- University of Colorado Boulder United States
- University of Augsburg Germany
nitrous oxide, flux estimate, ddc:550, Atmosphärische Spurenstoffe, top‐down, climate change, Midwest, agriculture
nitrous oxide, flux estimate, ddc:550, Atmosphärische Spurenstoffe, top‐down, climate change, Midwest, agriculture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
