
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rainfall and Salinity Effects on Future Pacific Climate Change

doi: 10.1029/2022ef003457
AbstractMost climate models simulate an intensified eastern equatorial Pacific warming in response to increasing greenhouse gas concentrations. So far, the proposed mechanisms have focused on thermodynamic aspects such as the spatial inhomogeneity of evaporative feedbacks, and future increases in upper ocean thermal stratification, partly intensified by projected Walker circulation weakening. Here we show, using earth system model freshwater perturbation experiments, that the simulated future rainfall intensification along the equator plays an important role in tropical climate change. Associated negative equatorial salinity anomalies of about −0.6 permil, which are very similar to the projected late 21st century salinity anomalies in CMIP6 SSP585 scenario, strengthen upper ocean stratification in the Pacific which leads to a flattening of the thermocline, shoaling of the equatorial undercurrent, and major shifts in tropical ocean dynamics. The resulting eastern basin equatorial warming also contributes to a marked weakening of the Pacific Walker circulation. Our analysis illustrates the importance of rainfall and salinity changes in the tropical climate system with relevance for understanding both, patterns of future climate change as well as the El Niño Southern Oscillation phenomenon.
- Institute for Basic Science Korea (Republic of)
- Pusan National University Korea (Republic of)
- University of Hawaiʻi Sea Grant United States
- Institute for Basic Science Korea (Republic of)
- Pusan National University Korea (Republic of)
Pacific walker circulation, Ecology, rainfall, salinity effect, Environmental sciences, tropical Pacific, climate change, climate feedback, GE1-350, QH540-549.5
Pacific walker circulation, Ecology, rainfall, salinity effect, Environmental sciences, tropical Pacific, climate change, climate feedback, GE1-350, QH540-549.5
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
