Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Earth's Futurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Roofing Highways With Solar Panels Substantially Reduces Carbon Emissions and Traffic Losses

Authors: Hou Jiang; Ning Lu; Jun Qin; Ling Yao; Xu Lian; Jijiang He; Tang Liu; +1 Authors

Roofing Highways With Solar Panels Substantially Reduces Carbon Emissions and Traffic Losses

Abstract

AbstractPhotovoltaic (PV) installations are a leading technology for generating green electricity and reducing carbon emissions. Roofing highways with solar panels offers a new opportunity for PV development, but its potential of global deployment and associated socio‐economic impacts have not been investigated. Here, we combine solar PV output modeling with the global highway distribution and levelized cost of electricity to estimate the potential and economic feasibility of deploying highway PV systems worldwide. We also quantify its co‐benefits of reducing CO2 equivalent emissions and traffic losses (road traffic deaths and socio‐economic burdens). Our analysis reveals a potential for generating 17.58 PWh yr−1 of electricity, of which nearly 56% can be realized at a cost below US$100 MWh−1. Achieving the full highway PV potential could offset 28.78% (28.21%–29.1%) of the global total carbon emissions in 2018, prevent approximately 0.15 million road traffic deaths, and reduce US$0.43 ± 0.16 trillion socio‐economic burdens per year. Highway PV projects could bring a net return of about US$14.42 ± 4.04 trillion over a 25‐year lifetime. To exploit the full potential of highway PV, countries with various income levels must strengthen cooperation and balance the multiple socio‐economic co‐benefits.

Related Organizations
Keywords

carbon emission reduction, Ecology, sustainable development goals, traffic death, Environmental sciences, highway photovoltaics, socio‐economic burden, GE1-350, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold