Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Biogeochemica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Biogeochemical Cycles
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://doi.org/10.22541/essoa...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/dv...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/32...
Other literature type . 2023
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000

ميزانية غازات الدفيئة للنظم الإيكولوجية الأرضية في شرق آسيا منذ عام 2000
Authors: Xuhui Wang; Yahui Gao; Sujong Jeong; Akihiko Ito; Ana Bastos; Benjamin Poulter; Yilong Wang; +33 Authors

The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000

Abstract

AbstractEast Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid‐century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long‐lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1(the top‐down approach) and −36.1 ± 207.1 Tg CO2eq yr−1(the bottom‐up approach) during 2000–2019. This net GHG sink includes a large land CO2sink (−1229.3 ± 430.9 Tg CO2 yr−1based on the top‐down approach and −1353.8 ± 158.5 Tg CO2 yr−1based on the bottom‐up approach) being offset by biogenic CH4and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top‐down and bottom‐up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.

Keywords

Atmospheric sciences, China, Climate Change and Variability Research, Oceanography, Greenhouse gas, Environmental science, Engineering, Terrestrial ecosystem, Characterization of Shale Gas Pore Structure, East Asia, Biology, Ecosystem, Global and Planetary Change, Geography, Ecology, Fossil fuel, Geology, FOS: Earth and related environmental sciences, Archaeology, Mechanics of Materials, Emissions, FOS: Biological sciences, Global Methane Emissions and Impacts, Environmental Science, Physical Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green