Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Earth's Future
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Projecting Large Fires in the Western US With an Interpretable and Accurate Hybrid Machine Learning Method

Authors: Fa Li; Qing Zhu; Kunxiaojia Yuan; Fujiang Ji; Arindam Paul; Peng Lee; Volker C. Radeloff; +1 Authors

Projecting Large Fires in the Western US With an Interpretable and Accurate Hybrid Machine Learning Method

Abstract

AbstractMore frequent and widespread large fires are occurring in the western United States (US), yet reliable methods for predicting these fires, particularly with extended lead times and a high spatial resolution, remain challenging. In this study, we proposed an interpretable and accurate hybrid machine learning (ML) model, that explicitly represented the controls of fuel flammability, fuel availability, and human suppression effects on fires. The model demonstrated notable accuracy with a F1‐score of 0.846 ± 0.012, surpassing process‐driven fire danger indices and four commonly used ML models by up to 40% and 9%, respectively. More importantly, the ML model showed remarkably higher interpretability relative to other ML models. Specifically, by demystifying the “black box” of each ML model using the explainable AI techniques, we identified substantial structural differences across ML fire models, even among those with similar accuracy. The relationships between fires and their drivers, identified by our model, were aligned closer with established fire physical principles. The ML structural discrepancy led to diverse fire predictions and our model predictions exhibited greater consistency with actual fire occurrence. With the highly interpretable and accurate model, we revealed the strong compound effects from multiple climate variables related to evaporative demand, energy release component, temperature, and wind speed, on the dynamics of large fires and megafires in the western US. Our findings highlight the importance of assessing the structural integrity of models in addition to their accuracy. They also underscore the critical need to address the rise in compound climate extremes linked to large wildfires.

Country
United States
Related Organizations
Keywords

Climate Change Science, Ecology, Environmental Science and Management, Climate change science, compound effects, Western US, interpretable machine learning, 624, Physical Geography and Environmental Geoscience, Atmospheric Sciences, explainable AI, Climate Action, Environmental sciences, climate change, Affordable and Clean Energy, Earth Sciences, Machine Learning and Artificial Intelligence, wildfires, GE1-350, Hydrology, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research