
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pan‐Arctic Assessment of Coastal Settlements and Infrastructure Vulnerable to Coastal Erosion, Sea‐Level Rise, and Permafrost Thaw

doi: 10.1029/2024ef005013
AbstractThis study assesses the vulnerability of Arctic coastal settlements and infrastructure to coastal erosion, Sea‐Level Rise (SLR) and permafrost warming. For the first time, we characterize coastline retreat consistently along permafrost coastal settlements at the regional scale for the Northern Hemisphere. We provide a new method to automatically derive long‐term coastline change rates for permafrost coasts. In addition, we identify the total number of coastal settlements and associated infrastructure that could be threatened by marine and terrestrial changes using remote sensing techniques. We extended the Arctic Coastal Infrastructure data set (SACHI) to include road types, airstrips, and artificial water reservoirs. The analysis of coastline, Ground Temperature (GT) and Active Layer Thickness (ALT) changes from 2000 to 2020, in addition with SLR projection, allowed to identify exposed settlements and infrastructure for 2030, 2050, and 2100. We validated the SACHI‐v2, GT and ALT data sets through comparisons with in‐situ data. 60% of the detected infrastructure is built on low‐lying coast (10 m a.s.l). The results show that in 2100, 45% of all coastal settlements will be affected by SLR and 21% by coastal erosion. On average, coastal permafrost GT is increasing by 0.8°C per decade, and ALT is increasing by 6 cm per decade. In 2100, GT will become positive at 77% of the built infrastructure area. Our results highlight the circumpolar and international amplitude of the problem and emphasize the need for immediate adaptation measures to current and future environmental changes to counteract a deterioration of living conditions and ensure infrastructure sustainability.
- University of Potsdam Germany
- Universidade de Lisboa Portugal
- Technical University of Lisbon
- Technical University of Lisbon Portugal
- University of Lisbon Portugal
Ecology, Permafrost, Infrastructures, Remote sensing, Coastal erosion, Sea level rise, Environmental sciences, remote sensing, climate change, sea level rise, Climate change, GE1-350, infrastructures, QH540-549.5, permafrost, coastal erosion
Ecology, Permafrost, Infrastructures, Remote sensing, Coastal erosion, Sea level rise, Environmental sciences, remote sensing, climate change, sea level rise, Climate change, GE1-350, infrastructures, QH540-549.5, permafrost, coastal erosion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
