Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Higher Onshore Wind Energy Potentials Revealed by Kilometer‐Scale Atmospheric Modeling

Authors: Chen, Shuying; Goergen, Klaus; Hendricks Franssen, Harrie-Jan; Winkler, Christoph; Poll, Stefan; Houssoukri Zounogo Wahabou, Yoda; Linssen, Jochen; +3 Authors

Higher Onshore Wind Energy Potentials Revealed by Kilometer‐Scale Atmospheric Modeling

Abstract

AbstractReliable and highly resolved information about onshore wind energy potential (WEP) is essential for expanding renewable energy to eventually achieve carbon neutrality. In this pilot study, simulated 60 m wind speeds (ws60m) from a km‐scale, convection‐permitting 3.3 km‐resolution ICON‐LAM simulation and often‐used 31 km‐resolution ERA5 reanalysis are evaluated at 18 weather masts. The estimated ICON‐LAM and ERA5 WEPs are then compared using an innovative approach with 1.8 million eligible wind turbine placements over southern Africa. Results show ERA5 underestimates ws60m with a Mean Error (ME) of −1.8 m s−1 (−27%). In contrast, ICON‐LAM shows a ME of −0.1 m s−1 (−1.8%), resulting in a much higher average WEP by 48% compared to ERA5. A combined Global Wind Atlas‐ERA5 product reduces the ws60m underestimation of ERA5 to −0.3 m s−1 (−4.7%), but shows a similar average WEP compared to ERA5 resulting from the WEP spatial heterogeneity.

Country
Germany
Keywords

info:eu-repo/classification/ddc/550, southern Africa, 550, QC801-809, Geophysics. Cosmic physics, ERA5, ICON‐LAM, renewable energy, Global Wind Atlas, convection‐permitting regional climate modeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Energy Research