Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Predicted Pause in the Rapid Warming of the Northwest Atlantic Shelf in the Coming Decade

Authors: Vimal Koul; Andrew C. Ross; Charles Stock; Liping Zhang; Thomas Delworth; Andrew Wittenberg;

A Predicted Pause in the Rapid Warming of the Northwest Atlantic Shelf in the Coming Decade

Abstract

AbstractThe capability to anticipate the exceptionally rapid warming of the Northwest Atlantic Shelf and its evolution over the next decade could enable effective mitigation for coastal communities and marine resources. However, global climate models have struggled to accurately predict this warming due to limited resolution; and past regional downscaling efforts focused on multi‐decadal projections, neglecting predictive skill associated with internal variability. We address these gaps with a high resolution (1/12°) ensemble of dynamically downscaled decadal predictions. The downscaled simulations accurately predicted past oceanic variability at scales relevant to marine resource management, with skill typically exceeding global coarse‐resolution predictions. Over the long term, warming of the Shelf is projected to continue; however, we forecast a temporary warming pause in the next decade. This predicted pause is attributed to internal variability associated with a transient, moderate strengthening of the Atlantic meridional overturning circulation and a southward shift of the Gulf Stream.

Keywords

climate change, decadal climate prediction, QC801-809, Geophysics. Cosmic physics, internal climate variability, regional ocean models, dynamical downscaling, coastal predictions

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research