
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Seasonality and Albedo Dependence of Cloud Radiative Forcing in the Upper Colorado River Basin

doi: 10.1029/2024jd042366
AbstractMountains create and enhance their own clouds, which both scatter and absorb shortwave radiation from the sun and absorb and re‐emit land surface and atmospheric longwave radiation. However, the impacts of clouds on the surface radiation balance in high elevation snowy mountain terrain are poorly explored. In this study, we use data collected by the SAIL field campaign and partner organizations in the upper elevations (2,880 m.a.s.l) of the Upper Colorado River Basin (UCRB) over a 21‐month period from September 2021 to June 2023 to estimate Cloud Radiative Forcing (CRF) in the shortwave, longwave, and the net effect. Longwave warming effects dominate during the winter when snow albedos are high (0.8–0.9) and the background atmospheric precipitable water vapor is low (0.5 cm), yielding a maximum monthly average net CRF of +34.7 W·m−2, meaning that clouds increase the net radiation relative to clear skies during this time period. The sign of net CRF switches in the warm season as snow recedes, sun‐angles increase, and the North American monsoon arrives, yielding a minimum monthly average net CRF of −47.6 W·m−2 with hourly minima of −600 W·m−2. The sign of net CRF is typically positive, even at solar noon, when the surface is snow covered, except for a brief period over melting, low‐albedo snow (0.5–0.6) impacted by dust impurities. Sensitivity tests elucidate the role of the surface albedo on the net CRF. The results suggest that net CRF will increase in magnitude and lead to a more persistent cooling effect on the surface net radiation budget as the snow cover declines.
- University of California System United States
cloud radiative forcing, upper Colorado River Basin, Atmospheric sciences, SAIL, surface energy balance, Climate change science, Earth Sciences, snow albedo, snow, Physical Geography and Environmental Geoscience, Atmospheric Sciences
cloud radiative forcing, upper Colorado River Basin, Atmospheric sciences, SAIL, surface energy balance, Climate change science, Earth Sciences, snow albedo, snow, Physical Geography and Environmental Geoscience, Atmospheric Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
