Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Earth Surface
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.18452/29...
Article . 2024
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Permafrost and Active Layer Temperature and Freeze/Thaw Timing Reflect Climatic Trends at Bayelva, Svalbard

Authors: Inge Grünberg; Brian Groenke; Sebastian Westermann; Julia Boike;

Permafrost and Active Layer Temperature and Freeze/Thaw Timing Reflect Climatic Trends at Bayelva, Svalbard

Abstract

AbstractPermafrost warming has been observed all around the Arctic, however, variations in temperature trends and their drivers remain poorly understood. We present a comprehensive analysis of climatic changes spanning 25 years (1998–2023) at Bayelva (78.92094°N, 11.83333°E) on Spitzbergen, Svalbard. The quality controlled hourly data set includes air temperature, radiation fluxes, snow depth, rainfall, active layer temperature and moisture, and, since 2009, permafrost temperature. Our Bayesian trend analysis reveals an annual air temperature increase of 0.9 ± 0.5°C/decade and strongest warming in September and October. We observed a significant shortening of the snow cover by −14 ± 8 days/decade, coupled with reduced winter snow depth. The active layer simultaneously warmed by 0.6 ± 0.7°C/decade at the top and 0.8 ± 0.5°C/decade at the bottom. While the soil surface got drier, in particular during summer, soil moisture below increased in accordance with the longer unfrozen period and higher winter temperatures. The thawed period prolonged by 10–15 days/decade at different depths. In contrast to earlier top‐soil warming, we observed stable temperatures since 2010 and only little permafrost warming (0.14 ± 0.13°C/decade). This is likely due to recently stable winter air temperature and continuously decreasing winter snow depth. This recent development highlights a complex interplay among climate and soil variables. Our distinctive long‐term data set underscores (a) the changes in seasonal warming patterns, (b) the influential role of snow cover decline, and (c) that air temperature alone is not a sufficient indicator of change in permafrost environments, thereby highlighting the importance of investigating a wider range of parameters, such as soil moisture and snow characteristics.

Country
Germany
Keywords

temperature, freeze/thaw processes, snow, 550 Geowissenschaften, Svalbard, climate change, permafrost, ddc: ddc:550

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid