
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biodiversity and ecosystem multifunctionality

doi: 10.1038/nature05947
pmid: 17625564
Biodiversity loss can affect ecosystem functions and services. Individual ecosystem functions generally show a positive asymptotic relationship with increasing biodiversity, suggesting that some species are redundant. However, ecosystems are managed and conserved for multiple functions, which may require greater biodiversity. Here we present an analysis of published data from grassland biodiversity experiments, and show that ecosystem multifunctionality does require greater numbers of species. We analysed each ecosystem function alone to identify species with desirable effects. We then calculated the number of species with positive effects for all possible combinations of functions. Our results show appreciable differences in the sets of species influencing different ecosystem functions, with average proportional overlap of about 0.2 to 0.5. Consequently, as more ecosystem processes were included in our analysis, more species were found to affect overall functioning. Specifically, for all of the analysed experiments, there was a positive saturating relationship between the number of ecosystem processes considered and the number of species influencing overall functioning. We conclude that because different species often influence different functions, studies focusing on individual processes in isolation will underestimate levels of biodiversity required to maintain multifunctional ecosystems.
- University of Oxford United Kingdom
- University of Zurich Switzerland
- University of Oxford United Kingdom
Conservation of Natural Resources, Ecology, Institute of Evolutionary Biology and Environmental Studies, Biodiversity, Plants, Europe, 570 Life sciences; biology, 590 Animals (Zoology), Regression Analysis, Biomass, Ecosystem
Conservation of Natural Resources, Ecology, Institute of Evolutionary Biology and Environmental Studies, Biodiversity, Plants, Europe, 570 Life sciences; biology, 590 Animals (Zoology), Regression Analysis, Biomass, Ecosystem
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
