Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Chemistry
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Chemistry
Article . 2011
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals

Authors: Shima, T; Luo, Y; Stewart, T; Bau, R; McIntyre, GJ; Mason, SA; Hou, ZM;

Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals

Abstract

Heteromultimetallic hydride clusters containing both rare-earth and d-transition metals are of interest in terms of both their structure and reactivity. However, such heterometallic complexes have not yet been investigated to a great extent because of difficulties in their synthesis and structural characterization. Here, we report the synthesis, X-ray and neutron diffraction studies, and hydrogen addition and release properties of a family of rare-earth/d-transition-metal heteromultimetallic polyhydride complexes of the core structure type 'Ln(4)MH(n)' (Ln = Y, Dy, Ho; M = Mo, W; n = 9, 11, 13). Monitoring of hydrogen addition to a hydride cluster such as [{(C(5)Me(4)SiMe(3))Y}(4)(μ-H)(9)Mo(C(5)Me(5))] in a single-crystal to single-crystal process by X-ray diffraction has been achieved for the first time. Density functional theory studies reveal that the hydrogen addition process is cooperatively assisted by the Y/Mo heteromultimetallic sites, thus offering unprecedented insight into the hydrogen addition and release process of a metal hydride cluster.

Country
Australia
Keywords

Hydrides, Molecular Conformation, 540, Crystallography, X-Ray, Neutron diffraction, Neutron Diffraction, Rare earths, Activation energy, Transition Elements, Thermodynamics, Yttrium, Metals, Rare Earth, Hydrogenation, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research