
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The role of charge-transfer states in energy transfer and dissipation within natural and artificial bacteriochlorophyll proteins

Understanding how specific protein environments affect the mechanisms of non-radiative energy dissipation within densely assembled chlorophylls in photosynthetic protein complexes is of great interest to the construction of bioinspired solar energy conversion devices. Mixing of charge-transfer and excitonic states in excitonically interacting chlorophylls was implicated in shortening excited states' lifetimes, but its relevance to active control of energy dissipation in natural systems is under considerable debate. Here we show that the degree of fluorescence quenching in two similar pairs of excitonically interacting bacteriochlorophyll derivatives is directly associated with increasing charge-transfer character in the excited state, and that the protein environment may control non-radiative dissipation by affecting the mixing of charge-transfer and excitonic states. The capability of local protein environments to determine the fate of excited states, and thereby to confer different functionalities to excitonically coupled dimers substantiates the dimer as the basic functional element of photosynthetic enzymes.
- University of Dhaka Bangladesh
- University of Amsterdam Netherlands
- Weizmann Institute of Science Israel
- Vrije Universiteit Amsterdam Netherlands
- Migal - Galilee Technology Center Israel
Electrons, Article, Zinc, Spectrometry, Fluorescence, Absorption, Physicochemical, Bacterial Proteins, Energy Transfer, Mutant Proteins, SDG 7 - Affordable and Clean Energy, Bacteriochlorophylls
Electrons, Article, Zinc, Spectrometry, Fluorescence, Absorption, Physicochemical, Bacterial Proteins, Energy Transfer, Mutant Proteins, SDG 7 - Affordable and Clean Energy, Bacteriochlorophylls
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
