Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Energy
Article . 2016 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

Authors: Tsu-Chien Weng; Feng Lin; Yijin Liu; Marca M. Doeff; Dennis Nordlund; Matthew K. Quan; Lei Cheng; +3 Authors

Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

Abstract

In technologically important LiNi1−x−yMnxCoyO2 cathode materials, surface reconstruction from a layered to a rock-salt structure is commonly observed under a variety of operating conditions, particularly in Ni-rich compositions. This phenomenon contributes to poor high-voltage cycling performance, impeding attempts to improve the energy density by widening the potential window at which these electrodes operate. Here, using advanced nano-tomography and transmission electron microscopy techniques, we show that hierarchically structured LiNi0.4Mn0.4Co0.2O2 spherical particles, made by a simple spray pyrolysis method, exhibit local elemental segregation such that surfaces are Ni-poor and Mn-rich. The tailored surfaces result in superior resistance to surface reconstruction compared with those of conventional LiNi0.4Mn0.4Co0.2O2, as shown by soft X-ray absorption spectroscopy experiments. The improved high-voltage cycling behaviour exhibited by cells containing these cathodes demonstrates the importance of controlling LiNi1−x−yMnxCoyO2 surface chemistry for successful development of high-energy lithium ion batteries. Advanced batteries require careful control over the interfacial properties of their constituent materials. This study designs hierarchically structured cathode materials that are resistant to surface reconstruction, leading to improved cycling performance.

Country
United States
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    230
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
230
Top 1%
Top 1%
Top 1%
Green
bronze
Related to Research communities
Energy Research