Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychopharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropsychopharmacology
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monkeys that Voluntarily and Chronically Drink Alcohol Damage their Brains: a Longitudinal MRI Study

Authors: Torsten Rohlfing; Christopher D. Kroenke; Byung Park; Edith V. Sullivan; Kathleen A. Grant; Adolf Pfefferbaum;

Monkeys that Voluntarily and Chronically Drink Alcohol Damage their Brains: a Longitudinal MRI Study

Abstract

Neuroimaging has consistently documented reductions in the brain tissue of alcoholics. Inability to control comorbidity, environmental insult, and nutritional deficiency, however, confound the ability to assess whether ethanol itself is neurotoxic. Here we report monkey oral ethanol self-administration combined with MR imaging to characterize brain changes over 15 months in 18 well-nourished rhesus macaques. Significant brain volume shrinkage occurred in the cerebral cortices of monkeys drinking ≥ 3 g/kg ethanol/day (12 alcoholic drinks) at 6 months, and this persisted throughout the period of continuous access to ethanol. Correlation analyses revealed a cerebral cortical volumetric loss of ~0.11% of the intracranial vault for each daily drink (0.25 g/kg), and selective vulnerability of cortical and non-cortical brain regions. These results demonstrate for the first time a direct relation between oral ethanol intake and measures of decreased brain gray matter volume in vivo in primates. Notably, greater volume shrinkage occurred in monkeys with younger drinking onset that ultimately became heavier drinkers than monkeys with older drinking onset. The pattern of volumetric changes observed in nonhuman primates following 15 months of drinking suggests that cerebral cortical gray matter changes are the first macroscopic manifestation of chronic ethanol exposure in the brain.

Keywords

Male, Analysis of Variance, Brain Mapping, Time Factors, Ethanol, Statistics as Topic, Administration, Oral, Central Nervous System Depressants, Self Administration, Macaca mulatta, Magnetic Resonance Imaging, Image Processing, Computer-Assisted, Animals, Brain Damage, Chronic, Longitudinal Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze