
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch

pmid: 39147777
Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch
AbstractHydrogen will play a key role in decarbonizing economies. Here, we quantify the costs and environmental impacts of possible large-scale hydrogen economies, using four prospective hydrogen demand scenarios for 2050 ranging from 111–614 megatonne H2 year−1. Our findings confirm that renewable (solar photovoltaic and wind) electrolytic hydrogen production generates at least 50–90% fewer greenhouse gas emissions than fossil-fuel-based counterparts without carbon capture and storage. However, electrolytic hydrogen production could still result in considerable environmental burdens, which requires reassessing the concept of green hydrogen. Our global analysis highlights a few salient points: (i) a mismatch between economical hydrogen production and hydrogen demand across continents seems likely; (ii) region-specific limitations are inevitable since possibly more than 60% of large hydrogen production potentials are concentrated in water-scarce regions; and (iii) upscaling electrolytic hydrogen production could be limited by renewable power generation and natural resource potentials.
- Chinese Academy of Sciences China (People's Republic of)
- ETH Zurich Switzerland
- Carnegie Institution for Science United States
- Institute of Process Engineering China (People's Republic of)
- Carnegie Institution for Science United States
2 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
