
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of winter soil warming on crop biomass carbon loss from organic matter degradation

Global warming poses an unprecedented threat to agroecosystems. Although temperature increases are more pronounced during winter than in other seasons, the impact of winter warming on crop biomass carbon has not been elucidated. Here we integrate global observational data with a decade-long field experiment to uncover a significant negative correlation between winter soil temperature and crop biomass carbon. For every degree Celsius increase in winter soil temperature, straw and grain biomass carbon decreased by 6.6 ( ± 1.7) g kg-1 and 10.2 ( ± 2.3) g kg-1, respectively. This decline is primarily attributed to the loss of soil organic matter and micronutrients induced by warming. Ignoring the adverse effects of winter warming on crop biomass carbon could result in an overestimation of total food production by 4% to 19% under future warming scenarios. Our research highlights the critical need to incorporate winter warming into agricultural productivity models for more effective climate adaptation strategies.
Nature Communications, 15 (1)
ISSN:2041-1723
- Chinese Academy of Sciences China (People's Republic of)
- Oklahoma City University United States
- State Key Laboratory of Soil and Sustainable Agriculture China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- University of California System United States
Crops, Agricultural, Agricultural, Science, Q, Temperature, Crops, Agriculture, Global Warming, 630, Article, Carbon, Soil, Biomass, Seasons
Crops, Agricultural, Agricultural, Science, Q, Temperature, Crops, Agriculture, Global Warming, 630, Article, Carbon, Soil, Biomass, Seasons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
