
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration

The discovery of more-efficient and stable water adsorbents for adsorption-driven chillers for cooling applications remains a challenge due to the low working capacity of water sorption, high regeneration temperature, low energy efficiency under given operating conditions and the toxicity risk of harmful working fluids for the state-of-the-art sorbents. Here we report the water-sorption properties of a porous zirconium carboxylate metal–organic framework, MIP-200, which features S-shaped sorption isotherms, a high water uptake of 0.39 g g−1 below P/P0 = 0.25, facile regeneration and stable cycling, and most importantly a notably high coefficient of performance of 0.78 for refrigeration at a low driving temperature (below 70 °C). A joint computational–experimental approach supports that MIP-200 may be a practical alternative to the current commercially available adsorbents for refrigeration when its water adsorption performance is combined with advantages such as the exceptional chemical and mechanical stability and the scalable synthesis that involves simple, cheap and green chemicals.
- University of Paris-Saclay France
- Institut des MAtériaux poreux de Paris France
- Sungkyunkwan University Korea (Republic of)
- Institut Charles Gerhardt France
- Sungkyul University Korea (Republic of)
[CHIM]Chemical Sciences, 540, 541
[CHIM]Chemical Sciences, 540, 541
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).245 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
