Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Energy
Article . 2018 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity

Authors: Youssef Belmabkhout; Prashant M. Bhatt; Karim Adil; Renjith S. Pillai; Amandine Cadiau; Aleksander Shkurenko; Guillaume Maurin; +3 Authors

Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity

Abstract

The process used to upgrade natural gas, biogas and refinery-off-gas directly influences the cost of producing the fuel and often requires complex separation strategies and operational systems to remove contaminants such as hydrogen sulfide (H2S) and carbon dioxide (CO2). Here we report a fluorinated metal–organic framework (MOF), AlFFIVE-1-Ni, that allows simultaneous and equally selective removal of CO2 and H2S from CH4-rich streams in a single adsorption step. The simultaneous removal is possible for a wide range of H2S and CO2 compositions and concentrations of the gas feed. Pure component and mixed gas adsorption, single-crystal X-ray diffraction and molecular simulation studies were carried out to elucidate the mechanism governing the simultaneous adsorption of H2S and CO2. The results suggest that concurrent removal of CO2 and H2S is achieved via the integrated favourable sites for H2S and CO2 adsorption in a confined pore system. This approach offers the prospect of simplifying the complex schemes for removal of acid gases. Contaminants such as CO2 and H2S present in natural gas and biogas streams must be removed before use; existing strategies to do so can be rather complex. Here, the authors use a fluorinated porous metal–organic framework to remove CO2 and H2S from CH4-rich feeds in a single step, potentially simplifying the process.

Country
Saudi Arabia
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    255
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
255
Top 0.1%
Top 10%
Top 0.1%
Related to Research communities
Energy Research