Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Energy
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution

Authors: Jan Kosco; Soranyel Gonzalez-Carrero; Calvyn T. Howells; Teng Fei; Yifan Dong; Rachid Sougrat; George T. Harrison; +11 Authors

Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution

Abstract

Organic semiconductor photocatalysts for the production of solar fuels are attractive as they can be synthetically tuned to absorb visible light while simultaneously retaining suitable energy levels to drive a range of processes. However, a greater understanding of the photophysics that determines the function of organic semiconductor heterojunction nanoparticles is needed to optimize performance. Here, we show that such materials can intrinsically generate remarkably long-lived reactive charges, enabling them to efficiently drive sacrificial hydrogen evolution. Our optimized hetereojunction photocatalysts comprise the conjugated polymer PM6 matched with Y6 or PCBM electron acceptors, and achieve external quantum efficiencies of 1.0% to 5.0% at 400 to 900 nm and 8.7% to 2.6% at 400 to 700 nm, respectively. Employing transient and operando spectroscopies, we find that the heterojunction structure in these nanoparticles greatly enhances the generation of long-lived charges (millisecond to second timescale) even in the absence of electron/hole scavengers or Pt. Such long-lived reactive charges open potential applications in water-splitting Z-schemes and in driving kinetically slow and technologically desirable oxidations. ; We acknowledge financial support from KAUST, including Office of Sponsored Research (OSR) awards no. OSR-2019-CRG8-4086 IED-OSR-2019-4454 (I.M.) and OSR-2018-CRG7-3749 (I.M.). We acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 952911, project BOOSTER (I.M.), grant agreement no. 862474, project RoLA-FLEX (I.M.), and grant agreement no. 101007084, project CITYSOLAR (IM), as well as EPSRC Project EP/T026219/1 (I.M.). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 886664 (S.G-C).

Countries
United Kingdom, Saudi Arabia, Saudi Arabia
Keywords

MECHANISM, Technology, Science & Technology, Multidisciplinary, Energy & Fuels, Materials Science, PHOTODEPOSITION, WATER OXIDATION, PCBM, 0906 Electrical and Electronic Engineering, 0907 Environmental Engineering, SOLAR, PROGRESS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    223
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 305
    download downloads 268
  • 305
    views
    268
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
223
Top 1%
Top 10%
Top 0.1%
305
268
Green
hybrid