Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Energy
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Organic solar cells using oligomer acceptors for improved stability and efficiency

Authors: Youcai Liang; Difei Zhang; Zerun Wu; Tao Jia; Larry Lüer; Haoran Tang; Ling Hong; +5 Authors

Organic solar cells using oligomer acceptors for improved stability and efficiency

Abstract

The power conversion efficiencies of organic solar cells (OSCs) have reached over 19%. However, the combination of high efficiency and long-term stability is still a major conundrum of commercialization. Here a Y6-analogue and a 2,2′-bithiophene unit are utilized to construct a series of oligomer acceptors to investigate the effect of molecular size and packing properties on photovoltaic performance. By altering the molecular chain length, we modify the thermal properties, crystallization behaviours and molecular packing and achieve an optimal microstructure and a more stable morphology in blend films. A combination of efficiencies over 15% and an extrapolated T80 lifetime over 25,000 h, which equates to an average lifetime exceeding 16 years in Guangzhou, is achieved for binary OSCs based on an oligomer acceptor. This work emphasizes the importance of oligomeric strategy in tuning molecular packing behaviours and blend morphology, leading to development of novel non-fullerene acceptors for stable and efficient OSCs.

Country
Germany
Keywords

info:eu-repo/classification/ddc/330

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    268
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
268
Top 1%
Top 10%
Top 0.1%
Green
Related to Research communities
Energy Research