
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Organic solar cells using oligomer acceptors for improved stability and efficiency

The power conversion efficiencies of organic solar cells (OSCs) have reached over 19%. However, the combination of high efficiency and long-term stability is still a major conundrum of commercialization. Here a Y6-analogue and a 2,2′-bithiophene unit are utilized to construct a series of oligomer acceptors to investigate the effect of molecular size and packing properties on photovoltaic performance. By altering the molecular chain length, we modify the thermal properties, crystallization behaviours and molecular packing and achieve an optimal microstructure and a more stable morphology in blend films. A combination of efficiencies over 15% and an extrapolated T80 lifetime over 25,000 h, which equates to an average lifetime exceeding 16 years in Guangzhou, is achieved for binary OSCs based on an oligomer acceptor. This work emphasizes the importance of oligomeric strategy in tuning molecular packing behaviours and blend morphology, leading to development of novel non-fullerene acceptors for stable and efficient OSCs.
- South China University of Technology China (People's Republic of)
- Helmholtz Association of German Research Centres Germany
- Forschungszentrum Jülich Germany
- State Key Laboratory of Luminescent Materials and Devices China (People's Republic of)
- University of Erlangen-Nuremberg Germany
info:eu-repo/classification/ddc/330
info:eu-repo/classification/ddc/330
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).268 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
