Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Energy
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In situ monitoring redox processes in energy storage using UV–Vis spectroscopy

Authors: Danzhen Zhang; Ruocun Wang; Xuehang Wang; Yury Gogotsi;

In situ monitoring redox processes in energy storage using UV–Vis spectroscopy

Abstract

Understanding energy storage mechanisms in electrochemical energy storage devices lays the foundations for improving their energy and power density. Here we introduce in situ ultraviolet–visible (UV–Vis) spectroscopy method to distinguish battery-type, pseudocapacitive and electrical double-layer charge storage processes. On the basis of Ti3C2Tx MXene in aqueous acidic and neutral electrolytes, and lithium titanium oxide in an organic electrolyte, we found a correlation between the evolution of UV–Vis spectra and the charge storage mechanism. The electron transfer number for Ti3C2Tx in an acidic electrolyte was calculated using quantitative analysis, which was close to previous measurements using X-ray absorption spectroscopy. Further, we tested the methodology to distinguish the non-Faradaic process in Ti3C2Tx MXene in a water-in-salt electrolyte, despite well-defined peaks in cyclic voltammograms. In situ UV–Vis spectroscopy is a fast and cost-effective technique that effectively supplements electrochemical characterization to track changes in oxidation state and materials chemistry and determine the charge storage mechanism.

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

RST/Storage of Electrochemical Energy

Country
Netherlands
Related Organizations
Keywords

290

Powered by OpenAIRE graph
Found an issue? Give us feedback