
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells

AbstractDue to the rapidly increasing demand for electric vehicles, the need for battery cells is also increasing considerably. However, the production of battery cells requires enormous amounts of energy, which is expensive and produces greenhouse gas emissions. Here, by combining data from literature and from own research, we analyse how much energy lithium-ion battery (LIB) and post lithium-ion battery (PLIB) cell production requires on cell and macro-economic levels, currently and in the future (until 2040). On the cell level, we find that PLIB cells require less energy than LIB cells per produced cell energy. On the macro-economic level, we find that the energy consumption for the global production of LIB and PLIB cells will be 130,000 GWh if no measures are taken. Yet, it is possible to optimize future production and save up to 66% of this energy demand.
info:eu-repo/classification/ddc/660, info:eu-repo/classification/ddc/330, 660, 330, ddc:660, 600, Energy modelling, 620, Batteries, Chemical engineering
info:eu-repo/classification/ddc/660, info:eu-repo/classification/ddc/330, 660, 330, ddc:660, 600, Energy modelling, 620, Batteries, Chemical engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).301 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
