Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Energy
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes

Authors: Dianying Liu; Bingbin Wu; Yaobin Xu; Jacob Ellis; Arthur Baranovskiy; Dongping Lu; Joshua Lochala; +10 Authors

Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes

Abstract

Abstract Lithium (Li) metal battery technology has attracted world-wide attention because of its high energy density, but its practical application is hindered by several challenges, with one significant issue being the large volume change and cell swelling. While external pressure is known to have a profound effect on cell performance, there are currently no reports exploring the relationship between external pressure and the electroplating of Li+ in large-format pouch cells to enhance overall performance. Here we investigate the influence of externally applied pressure on the electroplating and stripping of lithium metal in 350 Wh/kg pouch cells. A hybrid constant gap and constant pressure design is designed to apply a minimal external pressure for practical application. The self-generated pressures are monitored and quantified which are further correlated to the observed charge-discharge processes. A two-stage cycling process is observed. In the first stage, Li+ ions utilized are mainly supplied by the cathode which shuttle between the cathode and anode with minimal Li loss which minimizes cell swelling but only happens when pressure is applied appropriately. In the second stage, Li from the Li foil anode participates in the reaction and the thickness of the anode gradually increases. However, even after extensive cycling, cell swelling remains less than 10%, comparable to that of state-of-the-art Li-ion batteries. In addition, the pressure distribution along the horizontal direction across the surface of Li metal pouch cell reveals a complex behavior of Li+ migration during the electroplating (charge) process. The external pressure encourages a preferred plating process of Li in the central region, necessitating the development of new strategies to address uneven Li plating and utilization to advance Li metal battery technology.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Average
Top 10%
hybrid
Related to Research communities
Energy Research