
Found an issue? Give us feedback
Oxford University Research Archive
Article . 2025
License: CC BY
Data sources: Oxford University Research Archive
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Demand-side policies can significantly reduce emissions from energy use in buildings and transport

EC| NAVIGATE ,
EC| PRISMA ,
EC| iDODDLE
Authors: Rik van Heerden; Oreane Y. Edelenbosch; Vassilis Daioglou; Thomas Le Gallic; Luiz Bernardo Baptista; Alice Di Bella; Francesco Pietro Colelli; +19 Authors
Rik van Heerden; Oreane Y. Edelenbosch; Vassilis Daioglou; Thomas Le Gallic; Luiz Bernardo Baptista; Alice Di Bella; Francesco Pietro Colelli; Johannes Emmerling; Panagiotis Fragkos; Robin Hasse; Johanna Hoppe; Paul Kishimoto; Florian Leblanc; Julien Lefèvre; Gunnar Luderer; Giacomo Marangoni; Alessio Mastrucci; Hazel Pettifor; Robert Pietzcker; Pedro Rochedo; Bas van Ruijven; Roberto Schaeffer; Charlie Wilson; Sonia Yeh; Eleftheria Zisarou; Detlef van Vuuren;
Abstract
Large emission reductions in buildings and transport are possible by integrating demand-side strategies to electrify energy use, improve technological efficiency, and reduce or shift patterns of activity. With enabling policies and infrastructures, final energy users can make significant contributions to climate goals, particularly through widespread deployment of heat pumps and electric vehicles.
Countries
Austria, United Kingdom
Related Organizations
- University of Oxford United Kingdom
- International Institute for Applied Systems Analysis Austria
Keywords
600, 333
600, 333
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
0
Average
Average
Average
Green
Funded by
Related to Research communities
Energy Research