Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differences in vegetative growth of two invasive hawkweeds at temperatures simulating invaded habitats at two altitudes

Authors: Kris French; Eva Watts;

Differences in vegetative growth of two invasive hawkweeds at temperatures simulating invaded habitats at two altitudes

Abstract

AbstractHieracium pilosella and H. aurantiacum are invading alpine regions in New South Wales, Australia. In a glasshouse experiment we investigated germination and growth rates of these two species at temperatures simulating the altitudes where invasions are occurring from autumn to spring. We measured germination rates, growth rates and the development of stolons and ramets using seedlings and plantlets from established plants. Germination was low in H. aurantiacum and unaffected by altitude or seed age. H. pilosella showed site to site variability in germination but had greater germination. No species produced flower spikes. Both species grew rapidly and put at least twice as much biomass into roots compared to shoots. H. aurantiacum could begin to produce stolons after 27 days and seedlings grew a little larger than for H. pilosella. Hieracium aurantiacum put significantly more resources into ramets, allocating between 4–15% of biomass. H. pilosella produced 2.6 stolons month−1, in contrast to 9.8 stolons month−1 for H. aurantiacum. Furthermore, plantlets from established plants had vastly different growth rates. Plantlets of H. aurantiacum produced 2.1 leaves day−1 from late summer to winter where H. pilosella was 3 times slower for the same period but faster following winter. Both species were able to maintain strong growth over cooler months suggesting hawkweeds have the capacity for fast growth in the invaded range under high nutrients and lower competition. H. aurantiacum is likely to be a more effective invader than H. pilosella spreading through stolons and the development of weed mats.

Country
Australia
Related Organizations
Keywords

580, Acclimatization, Germination, Biomass, Seasons, Asteraceae, Introduced Species, Article

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research