Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/7w...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/2f...
Other literature type . 2020
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of surface area on the properties of shape-stabilized phase change material prepared using palm kernel shell activated carbon

تأثير مساحة السطح على خصائص مادة تغيير الطور المستقرة الشكل المحضرة باستخدام الكربون المنشط لقشرة نواة النخيل
Authors: Ahmad Fariz Nicholas; Mohd Zobir Hussein; Zulkarnain Zainal; Tumirah Khadiran;

The effect of surface area on the properties of shape-stabilized phase change material prepared using palm kernel shell activated carbon

Abstract

AbstractThe effect of the surface area of palm kernel shell activated carbon (PKSAC) on the properties of n-octadecane-encapsulated shape stabilized phase change material (SSPCM) for thermal energy storage (TES) application were studied. Various surface areas of the PKSAC were prepared using different amounts of H3PO4 treatment given to palm kernel shells from 0, 5, 10, 30 and 40% before the activation. The impregnation of n-octadecane into the different surface areas of PKSACs produced SSPCMs with different physico-chemical characteristics. The DSC analysis indicates that the higher the surface area of the PKSAC resulted in the higher freezing temperature due to the higher PCM loading that was encapsulated into the PKSAC pores. The results obtained from XRD, FESEM, Raman spectroscopy, TGA/DTG and leakage study indicate that the PKSAC is a good framework material for the development of n-octadecane-encapsulated SSPCM. It was also found that the surface area and porosity of the frameworks, activated carbon play an important role on the PCM loading percentage and their ability to be used as a thermal energy storage material.

Keywords

Composite material, Thermochemical Energy Storage and Sorption Technologies, Palm kernel, Octadecane, Phase-change material, Activated carbon, FOS: Mechanical engineering, Specific surface area, Organic chemistry, Article, Thermal energy storage, Catalysis, Food science, Engineering, Chemical engineering, Meteorology, Phase Change Materials, Thermal, FOS: Electrical engineering, electronic engineering, information engineering, Carbon fibers, Desiccant Cooling, Electrical and Electronic Engineering, Lithium Battery Technologies, Biology, FOS: Chemical engineering, Shell (structure), Ecology, Mechanical Engineering, Physics, Composite number, Optics, Palm oil, Thermal Energy Storage with Phase Change Materials, Materials science, Chemistry, FOS: Biological sciences, Physical Sciences, Raman spectroscopy, Adsorption, Porosity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Green
gold