Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ANN-GA based biosorption of As(III) from water through chemo-tailored and iron impregnated fungal biofilter system

Authors: A. Tripathi; M. R. Ranjan; D. K. Verma; Y. Singh; S. K. Shukla; Vishnu D. Rajput; Tatiana Minkina; +2 Authors

ANN-GA based biosorption of As(III) from water through chemo-tailored and iron impregnated fungal biofilter system

Abstract

AbstractThe iron impregnated fungal bio-filter (IIFB) discs of luffa sponge containing Phanerochaete chrysosporium mycelia have been used for the removal of As(III) from water. Two different forms of same biomass viz. free fungal biomass (FFB) and modified free fungal biomass (chemically modified and iron impregnated; CFB and IIFB) have been simultaneously investigated to compare the performance of immobilization, chemo-tailoring and iron impregnation for remediation of As(III). IIFB showed highest uptake capacity and percentage removal of As(III), 1.32 mg/g and 92.4% respectively among FFB, CFB and IIFB. Further, the application of RSM and ANN-GA based mathematical model showed a substantial increase in removal i.e. 99.2% of As(III) was filtered out from water at optimised conditions i.e. biomass dose 0.72 g/L, pH 7.31, temperature 42 °C, and initial As(III) concentration 1.1 mg/L. Isotherm, kinetic and thermodynamic studies proved that the process followed monolayer sorption pattern in spontaneous and endothermic way through pseudo-second order kinetic pathway. Continuous mode of As(III) removal in IIFB packed bed bioreactor, revealed increased removal of As(III) from 76.40 to 88.23% with increased column height from 5 to 25 cm whereas the removal decreased from 88.23 to 69.45% while increasing flow rate from 1.66 to 8.30 mL/min. Moreover, the IIFB discs was regenerated by using 10% NaOH as eluting agent and evaluated for As(III) removal for four sorption–desorption cycles, showing slight decrease of their efficiency by 1–2%. SEM–EDX, pHzpc, and FTIR analysis, revealed the involvement of hydroxyl and amino surface groups following a non-electrostatic legend exchange sorption mechanism during removal of As(III).

Keywords

Science, Iron, Q, R, Water, Hydrogen-Ion Concentration, Article, Water Purification, Kinetics, Medicine, Thermodynamics, Adsorption, Biomass, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid