Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Reports
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multi-objective optimisation approach with improved pareto-optimal solutions to enhance economic and environmental dispatch in power systems

Authors: Muhammad Ilyas Khan Khalil; Izaz Ur Rahman; Muhammad Zakarya; Ashraf Zia; Ayaz Ali Khan; Mohammad Reza Chalak Qazani; Mahmood Al-Bahri; +1 Authors

A multi-objective optimisation approach with improved pareto-optimal solutions to enhance economic and environmental dispatch in power systems

Abstract

AbstractThis work implements the recently developednth state Markovian jumping particle swarm optimisation (PSO) algorithm with local search (NS-MJPSOloc) awareness method to address the economic/environmental dispatch (EED) problem. The proposed approach, known as the Non-dominated Sorting Multi-objective PSO with Local Best (NS-MJPSOloc), aims to enhance the performance of the PSO algorithm in multi-objective optimisation problems. This is achieved by redefining the concept of best local candidates within the search space of multi-objective optimisation. The NS-MJPSOlocalgorithm uses an evolutionary factor-based mechanism to identify the optimum compromise solution, a Markov chain state jumping technique to control the Pareto-optimal set size, and a neighbourhood’s topology (such as a ring or a star) to determine its size. Economic dispatch refers to the systematic allocation of available power resources in order to fulfill all relevant limitations and effectively meet the demand for electricity at the lowest possible operating cost. As a result of heightened public consciousness regarding environmental pollution and the implementation of clean air amendments, nations worldwide have compelled utilities to adapt their operational practises in order to comply with environmental regulations. The (NS-MJPSOloc) approach has been utilised for resolving the EED problem, including cost and emission objectives that are not commensurable. The findings illustrate the efficacy of the suggested (NS-MJPSOloc) approach in producing a collection of Pareto-optimal solutions that are evenly dispersed within a single iteration. The comparison of several approaches reveals the higher performance of the suggested (NS-MJPSOloc) in terms of the diversity of the Pareto-optimal solutions achieved. In addition, a measure of solution quality based on Pareto optimality has been incorporated. The findings validate the effectiveness of the proposed (NS-MJPSOloc) approach in addressing the multi-objective EED issue and generating a trade-off solution that is both optimal and of high quality. We observed that our approach can reduce$$\sim $$∼6.4% of fuel costs and$$\sim $$∼9.1% of computational time in comparison to the classical PSO technique. Furthermore, our method can reduce$$\sim $$∼9.4% of the emissions measured in tons per hour as compared to the PSO approach.

Keywords

Large-scale optimisation, Science, Markov chain, Q, Scalability, R, Article, Medicine, Evolutionary factor, Particle swarm optimisation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Green
hybrid