
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Examining sea levels forecasting using autoregressive and prophet models

AbstractGlobal climate change in recent years has resulted in significant changes in sea levels at both global and local scales. Various oceanic and climatic factors play direct and indirect roles in influencing sea level changes, such as temperature, ocean heat, and Greenhouse gases (GHG) emissions. This study examined time series analysis models, specifically Autoregressive Moving Average (ARIMA) and Facebook’s prophet, in forecasting the Global Mean Sea Level (GMSL). Additionally, Vector Autoregressive (VAR) model was utilized to investigate the influence of selected oceanic and climatic factors contributing to sea level rise, including ocean heat, air temperature, and GHG emissions. Moreover, the models were applied to regional sea level data from the Arabian Gulf, which experienced higher fluctuations compared to GMSL. Results showed the capability of autoregressive models in long-term forecasting, while the Prophet model excelled in capturing trends and patterns in the time series over extended periods of time.
- University of Dubai United Arab Emirates
- University of Dubai United Arab Emirates
Science, Q, R, Prophet model, Sea level rise, Article, Autoregressive models, Climate change, Medicine
Science, Q, R, Prophet model, Sea level rise, Article, Autoregressive models, Climate change, Medicine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
