
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing electric vehicle powertrains peak performance with robust predictive direct torque control of induction motors: a practical approach and experimental validation

AbstractEnhancing the efficiency of the electric vehicle’s powertrain becomes a crucial focus, wherein the control system for the traction motor plays a significant role. This paper presents a novel electric vehicle traction motor control system based on a robust predictive direct torque control approach, an improved version of the conventional DTC, where the traditional switching table and the hysteresis regulators are substituted with a predictive block based on an optimization algorithm. Additionally, a robust predictive speed loop regulator is employed instead of the proportional-integral regulator, which integrates a new cost function with a finite horizon, incorporating integral action into the control law based on a Taylor series expansion. This technique’s primary benefit is its independence from the necessity to measure and observe external disturbances, as well as uncertainties related to parameters. The effectiveness of the suggested system was confirmed through simulation and experimental results under the OPAL-RT platform. The findings indicate that the proposed approach outperforms the conventional method in terms of rejecting disturbances, exhibiting robustness to variations in parameters, and minimizing torque ripple.
Electric vehicle powertrains, Direct torque control, Robust speed controller, Induction motor drives, Science, Robust model predictive control, Q, R, Article, Medicine
Electric vehicle powertrains, Direct torque control, Robust speed controller, Induction motor drives, Science, Robust model predictive control, Q, R, Article, Medicine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
