Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Juelich Shared Elect...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Catalysis
Article . 2021 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature Catalysis
Article
License: Springer Nature TDM
Data sources: Sygma
Nature Catalysis
Article . 2021 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemical and biological catalysis for plastics recycling and upcycling

Authors: Lucas D. Ellis; Nicholas A. Rorrer; Kevin P. Sullivan; Maike Otto; John E. McGeehan; Yuriy Román-Leshkov; Nick Wierckx; +1 Authors

Chemical and biological catalysis for plastics recycling and upcycling

Abstract

Plastics pollution is causing an environmental crisis, prompting the development of new approaches for recycling, and upcycling. Here, we review challenges and opportunities in chemical and biological catalysis for plastics deconstruction, recycling, and upcycling. We stress the need for rigorous characterization and use of widely available substrates, such that catalyst performance can be compared across studies. Where appropriate, we draw parallels between catalysis on biomass and plastics, as both substrates are low-value, solid, recalcitrant polymers. Innovations in catalyst design and reaction engineering are needed to overcome kinetic and thermodynamic limitations of plastics deconstruction. Either chemical and biological catalysts will need to act interfacially, where catalysts function at a solid surface, or polymers will need to be solubilized or processed to smaller intermediates to facilitate improved catalyst–substrate interaction. Overall, developing catalyst-driven technologies for plastics deconstruction and upcycling is critical to incentivize improved plastics reclamation and reduce the severe global burden of plastic waste. Plastics are invaluable materials for modern society, although they result in the generation of large amounts of litter at the end of their life cycle. This Review explores the challenges and opportunities associated with the catalytic transformation of waste plastics, looking at both chemical and biological approaches to transforming such spent materials into a resource.

Country
Germany
Keywords

info:eu-repo/classification/ddc/540

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    691
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
691
Top 0.1%
Top 1%
Top 0.01%
Green