
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Vertical structural complexity of plant communities represents the combined effects of resource acquisition and environmental stress on the Tibetan Plateau

AbstractThe vertical structural complexity (VSC) of plant communities reflects the occupancy of spatial niches and is closely related to resource utilization and environmental adaptation. However, understanding the large-scale spatial pattern of VSC and its underlying mechanisms remains limited. Here, we systematically investigate 2013 plant communities through grid sampling on the Tibetan Plateau. VSC is quantified as the maximum plant height within a plot (Height-max), coefficient of variation of plant height (Height-var), and Shannon evenness of plant height (Height-even). Precipitation dominates the spatial variation in VSC in forests and shrublands, supporting the classic physiological tolerance hypothesis. In contrast, for alpine meadows, steppes, and desert grasslands in extreme environments, non-resource limiting factors (e.g., wide diurnal temperature ranges and strong winds) dominate VSC variation. Generally, with the shifting of climate from favorable to extreme, the effect of resource availability gradually decreases, but the effect of non-resource limiting factors gradually increases, and that the physiological tolerance hypothesis only applicable in favorable conditions. With the help of machine learning models, maps of VSC at 1-km resolution are produced for the Tibetan Plateau. Our findings and maps of VSC provide insights into macroecological studies, especially for adaptation mechanisms and model optimization.
- Chinese Academy of Science China (People's Republic of)
- Northeast Forestry University China (People's Republic of)
- Chinese Academy of Sciences (中国科学院) China (People's Republic of)
- Chinese Academy of Sciences (中国科学院) China (People's Republic of)
- Institute of Geographic Sciences and Natural Resources Research China (People's Republic of)
QH301-705.5, Climate Change, Climate, Temperature, Plants, Tibet, Article, Biology (General)
QH301-705.5, Climate Change, Climate, Temperature, Plants, Tibet, Article, Biology (General)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
