Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Communications Earth...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Communications Earth & Environment
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large igneous province activity drives oceanic anoxic event 2 environmental change across eastern Asia

Authors: R. Takashima; D. Selby; T. Yamanaka; Y. Kuwahara; H. Nakamura; K. Sawada; M. A. Ikeda; +8 Authors

Large igneous province activity drives oceanic anoxic event 2 environmental change across eastern Asia

Abstract

AbstractDuring mid-Cretaceous Oceanic Anoxic Event 2, significant increase of atmospheric carbon dioxide concentrations from the eruption of the large igneous provinces is hypothesized to have induced a humid climate and an elevation in nutrient runoff from continents to the oceans, resulting in oxygen depletion in the ocean. However, hitherto there is limited insight into the driving factors of Oceanic Anoxic Event 2 from the Pacific and Asian continental margins, even though the former and the latter were the largest ocean and landmass at that time. Here, a multiproxy analysis for the Oceanic Anoxic Event 2 interval of the Yezo Group –deposited on northwestern Pacific along the active Asian continental margin– is interpretated to identify seven volcanic pulses, five of which may have elevated humidity, weathering intensity, and vegetational change in the eastern margin of Asia. Moreover, oxygen depletion occurred simultaneously in the northwest Pacific. Given that these environmental changes in the eastern margin of Asia were penecontemporaneous with the global carbon burial intervals during Oceanic Anoxic Event 2, the elevated nutrient supply from the Asian continental margin to the Pacific Ocean may have, in part, contributed to the worldwide depletion of oxygen of the ocean during Oceanic Anoxic Event 2.

Keywords

Environmental sciences, QE1-996.5, Geology, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
gold
Related to Research communities
Energy Research