
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multiscale coupling of surface temperature with solid diffusion in large lithium-ion pouch cells

Multiscale coupling of surface temperature with solid diffusion in large lithium-ion pouch cells
AbstractUntangling the relationship between reactions, mass transfer, and temperature within lithium-ion batteries enables approaches to mitigate thermal hot spots and slow degradation. Here, we develop an efficient physics-based three-dimensional model to simulate lock-in thermography experiments, which synchronously record the applied current, cell voltage, and surface-temperature distribution from commercial lithium iron phosphate pouch cells. We extend an earlier streamlined model based on the popular Doyle–Fuller–Newman theory, augmented by a local heat balance. The experimental data reveal significant in-plane temperature non-uniformity during battery charging and discharging, which we rationalize with a multiscale coupling between heat flow and solid-state diffusion, in particular microscopic lithium intercalation within the electrodes. Simulations are exploited to quantify properties, which we validate against a fast full-discharge experiment. Our work suggests the possibility that non-uniform thermal states could offer a window into—and a diagnostic tool for—the microscopic processes underlying battery performance and cycle life.
- University of Oxford United Kingdom
- The Faraday Institution United Kingdom
- Department of Computer Science University of Oxford United Kingdom
- Department of Computer Science University of Oxford United Kingdom
- University of Oxford Pakistan
Chemical Physics (physics.chem-ph), FOS: Computer and information sciences, FOS: Physical sciences, Physics - Applied Physics, Applied Physics (physics.app-ph), Statistics - Applications, Article, Physics - Chemical Physics, Applications (stat.AP)
Chemical Physics (physics.chem-ph), FOS: Computer and information sciences, FOS: Physical sciences, Physics - Applied Physics, Applied Physics (physics.app-ph), Statistics - Applications, Article, Physics - Chemical Physics, Applications (stat.AP)
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
